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Abstract. We show a very efficient solution of the equation of Saito’s orthogonality- 
condition model (OCM) for bound and resonant states by means of a separable expansion 
of the potential (PSE method). We derive some simplifications of the published formulae 
of the PSE method, which facilitate its application to the OCM and may be useful in solving 
the Schrodinger equation as well. 

1. Introduction 

It is firmly established that the microscopic two-cluster models can successfully describe 
many levels in light nuclei and they can also provide good results for the elastic 
scattering of light nuclei (for example, Fujiwara et a1 1980, Furutani et a1 1980). 
Unfortunately, even the simplest microscopic model, which substitutes the wavefunc- 
tions of the internal nucleonic motion in both clusters by harmonic oscillator (HO)  

wavefunctions with equal oscillator parameters, needs lengthy calculations. 
The calculations can be greatly simplified by using Saito’s orthogonality-condition 

model (OCM) (Saito 1968, 1969), which has proved to be a good approximation to the 
microscopic model. In this model the equation of motion is a Schrodinger-like equation 
for the intercluster relative motion with an effective local cluster-cluster interaction. 
The Pauli principle is taken into account by a projection operator that forces the 
solution to be orthogonal to the Pauli-forbidden (or redundant) states, which give rise 
to vanishing many-body wavefunctions. 

The OCM equation is an integro-differential equation because of the presence of 
the projector. To avoid the difficulties of the direct numerical integration of this 
equation, Saito (1969, 1977) proposed a simple numerical method, which has been 
applied to scattering problems. However, for bound or resonant states this method 
does not seem easily applicable. Another fully numerical method for the OCM problem 
is the so-called inverse-iteration method. This method can easily be used not only for 
scattering states but also for the bound states belonging to the lowest energy for each 
set of quantum numbers in a given potential well. To find states above the ground 
state for the same set of quantum numbers is more involved. For resonant states this 
method is also much more complicated. 

The OCM equation is frequently solved for bound states by a wavefunction expansion 
(WFE)  (Fujiwara et a1 1980). Since the redundant states are elements of an HO basis, 
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by expanding the solution in terms of this basis, the effect of the projector is reduced 
to the omission of the redundant states. A very nice feature of this method is that if 
the potential is some sum of Gaussian and  modified Gaussian functions-these are 
very common forms in the ocM-almost all the calculations can be carried out 
analytically. A shortcoming of this method is that the asymptotic behaviour of the 
wavefunction will be incorrect even if a large basis is used. 

In this paper we use a powerful method, which was recently proposed for solving 
the Schrodinger equation (Revai 1975, Gyarmati et a1 1979) and is free of this deficiency. 
Nevertheless, it has the same analytical feature as the WFE method. The method is 
based on a separable expansion of the potential (PSE method). It is very easily 
applicable not only for bound states but for resonant states as well (Gyarmati et a1 
1984, Kruppa and Papp 1984) and it will be shown that it is well suited to the OCM 

problem. For some applications the method has definite advantages over.any fully 
numerical methods even for bound states. For example, the overlap functions, which 
is needed for the theoretical description of direct-transfer reactions (Lovas and Pi1 
1984) or decay, and the wavefunction in momentum representation can be calculated 
in a very straightforward way. The method is also applicable without any modification 
if the potential has an  explicit non-locality. 

In § 2 the PSE method for the Schrodinger equation is reviewed and  some necessary 
formulae are presented. In  Q 3 some simplifications are introduced, which make the 
method well suited for the OCM problem. Then the PSE method is applied to the OCM 

problems ( 9  4). Finally, our bound-state results are compared to those of the WFE 
method, a n  example for the resonant-state solution is given and conclusions are drawn 
(§  5). 

2. The PSE method for the Schrodinger equation 

In the PSE method the solution of the Schrodinger equation 

( T +  V ) l 4 ) =  EI4) 

( T +  ENI4NA (1 )  

is achieved as the limit of the solutions of the auxiliary problems 

where the truncated potential FN is a sum of separable terms: 

with 
v,w = PNVPN 

p N  = 1 1 l i ~ d ~ p l .  
N 

A,p  i = O  

In (3)  IiAp) denotes an  element of a complete set of orthonormal functions. We choose 
lihk) to be HO functions, with i and h p  denoting the radial node number and the 
orbital momentum respectively. If V satisfies rather weak conditions, the PSE solution 
converges to the exact one (Gyarmati et a1 1979). Therefore, if N is large enough, 
14) can be approximated by Iq5N) very well. The PSE as an  approximate method consists 
of solving ( 1 )  for an  appropriate N. 

This method has been applied with success to various problems and has proved 
superior to the WFE, especially in problems where the asymptotic part of the wavefunc- 
tion is important. Moreover, unlike the WFE, the PSE is applicable for resonant states. 
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A formal analogy between the WFE and PSE methods is that both involve truncated 
forms of the Schrodinger equation. The difference is that while in the WFE method 
both the potential and kinetic energy operators are truncated, in the PSE the kinetic 
energy operator remains untruncated. The truncation of T is responsible for the wrong 
tail behaviour of the WFE wavefunction mentioned in the introduction. Obviously, the 
PSE does not suffer from this deficiency. Nevertheless, the WFE is a variational method, 
whose convergence is necessarily monotonic, and this is not true for the PSE even for 
bound states. This shortcoming is compensated for, however, by the fact that the PSE 

usually converges faster than the WFE (RCvai 1975, Bang et a1 1978). Moreover, the 
convergence of the PSE method is much less sensitive to the choice of the oscillator 
parameter than that of the WFE method. 

If V is spherical and 14) is a bound or resonant state that belongs to a particular 
orbital momentum lm, (1 )  is equivalent to the Lippmann-Schwinger equation 

(4) takes the form 
N N 

From (6) we can see that the first N +  1 coefficients c, ( O S  is N )  determine the 
wavefunction uniquely. If we multiply (6) by ( k l m ( (  k = 0 .  . . N ) ,  we get a system of 
homogeneous linear equations: 

Here the notation 

Gf, = (iImlGo(EN)ljIm) (8) 

is used. The matrix elements Gf, can be calculated through recurrence relations 
(Kruppa and Papp 1984). For the indices i and j these are 

Gf+i, ,=( Wf GL- QI-iGf-i ,J-S,)/Qf (9) 

GI,]+ = ( Wj GI, - 0:- i Gi,, - I - 6, I /  0: (10) 
where 
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p = m u / h  is the oscillator parameter and m is the reduced mass. As Q!, =0,  the 
second term of the right-hand side of (9) vanishes for i = O ,  and the same applies to 
( I O )  f o r j  = 0. Therefore for the recurrence relations to be used, it is sufficient to know 
CAo. This can be calculated via a simple recurrence relation from G:,,, which is 
expressible with the error function (Kruppa and Papp 1984). 

The system of equations (7 )  has a non-trivial solution if and only if its determinant 
is zero. This condition yields the energy eigenvalue or the depth of the potential for 
a given energy. Solving (7) we obtain the PSE wavefunction from (6) as a linear 
combination of the functions Go(EN)lilm). These functions can be calculated from 
Go(EN)IOlm) by means of the relation (Kruppa and Papp 1984) 

2m 
Go( E ) 1 i + 1 Im) = Wl Go( E )  I ilm) - QI-, Go( E )I i - 1 Im) - - I i lm)) /Qi . 

h2P 

Kruppa and Papp (1984) have also given a recurrence relation for Go(E)lOlm) and 
the explicit forms for 1 = 0 and 1 = I .  Of course, if the wavefunction in momentum 
representation is to be calculated, these relations need not be used, because Go is a 
simple multiplicative factor. 

It can easily be derived from ( 6 )  that the normalisation condition forthe wavefunction 
is 

N c d,(ilmlG;(E,)blm)d, = 1 
I J = o  

where 
N 

d, = c Vlc, 
,=0 

and the matrix elements of the G i ( E N )  operator can be calculated from 
(00mlG2(E)100m) by the aid of recurrence relations similar to the ones used in 
calculating the matrix elements of Go(EN)  (Kruppa and Papp 1984). 

Gyarmati et al (1979) introduced a ‘smoothing procedure’, which can speed up the 
convergence of the PSE method. Instead of PN an operator 

N 

P A  = c l iAp)uy(ihpl  
A @  1=0 

is used in (2) with the property of 1imN+= P A  = 1. In the formulae the only modification 
implied is to replace V!, by VL = V ’ , u ~ u ~ .  The choice 

1 -exp{-[a(N+ 1 - i)/( N +  1)12} 
1 - exp( -a2 )  ui = ( i  = 0, 1, . . . , N )  

with a = 6  has proved to be very successful in practical applications. 

3. Simplification of the PSE equations 

The formalism of § 2 is already suitable for practical calculations. It is based on the 
general formalism used in the code of Kruppa and Papp (1984), but is specialised to 
spherical potentials. It is, however, possible to exploit further the particular properties 
of the HO basis and make the formulae simpler. The first step is a re-arrangement of 
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equations (7). If we multiply the kth ( k  = N - 1, N - 2, . . . , 1) equation (this contains 
index k-  1) by Q : - l / Q :  and the ( k +  1)th equation by W:/QL and then we subtract 
them from the ( k  + 2)th equation, using (9), we arrive at the new ( k  + 2)th equation: 

As Q-l = 0, an equation of the form of (14) can be written for k = 0 as well. Then, 
multiplying equations (14) by GkkQ: and adding them to the first of equations (71, 
using relation (9) again, we get the following expression: 

Putting this equation into the last place and multiplying it by -1, we obtain the new 
system of equations: 

l N  
Q : j = o  

( k  = 0, . * . , N - 1)  (15) - C ( Q L - l a k - I j -  W:akj+Q:ak+vj+V:~ 

These equations contain only two elements of the Green matrix GI,, both of them from 
the first row, and the time-consuming matrix multiplication has disappeared. Neverthe- 
less, this system of equations is equivalent to the original one and its determinant is 
also the same. 

The evaluation of the wavefunction can also be simplified. As the coefficients 
contained in the recurrence relation (13) are numbers, it can easily be seen that 
Go(EN)lilm) is a linear combination of the Go(EN)lOlm) and the HO states Ijlm) 
( j  S i - 1). The wavefunction being a linear combination of Go( EN)Iilm) ( i  S N ) ,  can 
be written as 

The multiplication of (16) by ( i lm( ( i  = 0, 1 , .  . . , N )  and the use of the definitions (5) 
and (8) yield expressions for the combination coefficients A and Bj:  

A = C N /  G&o Bj = Cj - GjOCN/ GL0. (18) 

Equation (17) shows that we can calculate the wavefunction in coordinate representa- 
tion without actually calculating G o ( E N ) ( i h )  for i >  o from (13). 

An alternative form for the normalisation condition for the wavefunction is 

1 = c:. 
i=O 

This condition is consistent with the usual convention for resonant states and also 
good for bound states. The ci are defined by ( 5 )  and, for i S N, their values are provided 
by (15) and (16). Let i be greater than N. Multiplying (17) by (ilml, using (18), (5 )  
and (8) we end up with 

Ci =(ilm(Go(EN)lOlltl)CN/GINO= GfoCN/Gho ( i >  N ) .  
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If we substitute it into (19), the normalisation condition takes the form 

N 

(20) ( t = O  

N 

= C c f + ( c ~ / G ! + . J ~ ) ~  (Olm/G; (E~) lOlm) -  (G:o12). 
I =o 

Equations (15)-(18) and (20) show that we need only one row of the Green matrix 
and a single element of the matrix of the G i ( E N )  operator. This is a substantial 
simplification of the formulae of 0 2 ;  it allows a more economical computation. We 
emphasise that the formalism so far is not specified to the OCM. We shall see, however, 
that these re-arrangements will be especially useful in the case of the OCM equation. 

4. The OCM equation and the PSE method 

In the OCM model the wavefunction 14) of the intercluster relative motion satisfies the 
OCM equation 

A( T +  V(4) = E l 4 ) .  (21) 

Here E is the energy of the relative motion, T is the relative kinetic energy operator, 
V is an effective cluster-cluster interaction and  A is the projection operator projecting 
out of the subspace of the redundant states. From the microscopic cluster model that 
the OCM is based on, it can be shown that the redundant states are elements of a HO 

basis (Zaikin 1971, Horiuchi 1977) and they have the smallest quantum numbers. 
We shall apply the PSE method with the basis defined by the redundant states. As 

we need a sound operator T, we re-arrange the OCM equation (21) as 

[ T -  ( 1  - A )  T +  ~ v l l 4 )  (22) 

and then, just as in the case of the Schrodinger equation, we approximate it with (1). 
Here the ‘truncated potential’ is 

? ~ = p N [ - ( l  - A ) T + A V ] P p +  (23) 

Denoting the number of forbidden states belonging to an orbital momentum A by nA, 
and using the definition (3), we can cast (23) into the form 

We note that if the expansion contains at least one non-forbidden state for every A 
( N  3 max( n A ) ) ,  the first triple sum is exactly equal to the untruncated operator 
-( 1 - A )  T because ( ihplTl jAp)  = 0 if Ii - j/ > 1. Therefore only the operator V is 
truncated by PN just as in the case of the Schrodinger equation. From (24) it follows 
that solving the OCM problem we have to change the matrix elements of V to the 
matrix elements of -T  at the first nl row of Vb. Using this new matrix Vh, we can 
solve the OCM equation with the formulae of the preceding sections. 

We can reduce the problem to the subspace of the non-redundant states if we use 
the PSE equations in their re-arranged form, (15) and  (16). As the first nl rows of the 
matrix Vf, contain the matrix elements of - T, with the notations ( 1  1 )  and (12) they 
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With this expression the first n, equations of (18) reduce to 

- ( E /  Qk)Ck 0 ( k  = 0, . . . , nh - I ) .  (25) 

These equations only express that the solution is orthogonal to the redundant states, 
as it should be. We note that this requirement cannot be seen explicitly from the 
original form (7) of the PSE equations. 

Since our first nl equations ( 2 5 )  are trivial, we have to solve only a reduced problem. 
We can also notice that we need only the matrix elements of the potential between 
non-redundant states; any other matrix elements are multiplied by ci = 0 ( i  = 0, . . . , 
nl - 1) everywhere. 

The smoothing procedure can be used in the case of the OCM equations as well. 
A possible choice for ay is 

I1 ( i = O , .  . . , n l -  1) 
U;“ = 1 - exp{-[ar(N + 1 - i ) / ( n  + 1 - nl ) ] ’ }  

( i  = n k . .  . , N ) .  i 1 -exp(-a’) 

An important quantity, the overlap function U, can be calculated in a very straight- 
forward manner from the PSE solution. As I U ) = A i ” ( 4 ) ,  where the operator A is 
diagonal on the basis and its eigenvalues a, tend to 1 when i increases, we can get a 
very good approximation to U if N is large enough: 

5. Results and conclusions 

In this section we show some examples for the solution of the OCM equation with the 
PSE method. For the bound-state cases we also provide some comparisons between 
the PSE and WFE methods. The bound-state examples to be shown are calculations for 
the ground state of the I6O + CY system. This state belongs to a relative orbital momentum 
1 = 0. The number of the 1 = 0 forbidden states is no = 4. We have used an effective 
cluster-cluster interaction of the Gaussian form V( r )  = - VO exp[-( r /  a)’] with V, = 
-126.5 MeV and a = 2.7031 fm. In figure l ( a )  we coinpare the energies EN of the 
intercluster relative motion obtained from the PSE and WFE methods as functions of 
the maximum radial node number N of the basis. It can be seen that the PSE converges 
faster than the WFE in the case of OCM as well. Figure I ( a )  also shows that the 
smoothing procedure can speed up the convergence appreciably, so it is worthwhile 
to use it. The energies of this PSE method for a fixed N are usually closer to the exact 
one by two to three orders of magnitude than the WFE energies. ( In  our example the 
‘exact energy’ E = -4.724 790 has been determined by extrapolation.) 

It may be important to determine not only the energy but also the wavefunction 
with some accuracy. In figure 2(a)  we compare the two methods from this point of 
view. We show the PSE and WFE wavefunctions that belong to the N = 11 and N = 33 
calculations of figure 1 ( a ) .  While the N = 11 WFE wavefunction is unacceptable, the 
corresponding PSE wavefunction is very good everywhere, even in the asymptotic 



1672 K F Pal 

I 
t-. ” 

I o x  

i 

l 

’ .  

X I  

. ~ 

10 20 30 
N 

C l  I I I I 

lo-[ 10-3 

10-5 ’I 
h 20 

10 
N 

Figure 1. lE,w - E /  values as the function of the maximum radial node number N of the 
basis for ( a )  the ground state and ( b )  the 6+ state of the I6O+ CY system. The energies E,w 
of the relative motion have been calculated with WFE ( x )  and PSE (0, without smoothing; 
0, with smoothing a = 6)  methods. The ground-state energy E = -4.724 790 and the 6’ 
state energy E = 6.99212-0.63490 i have been obtained by extrapolation. The strange 
behaviour of the PSE method with smoothing in the first few points of figure I ( a )  is a 
consequence of the change of sign of E ,  - E. 

region. The N = 33 WFE wavefunction is also very good within -8 fm, but its tail 
behaviour is wrong. In fact, the region where a WFE wavefunction is good grows as 
slowly as - 

We can conclude that the PSE method is superior to the WFE for the bound-state 
OCM problem in cases when the WFE is applicable at all. Moreover, if we use the 
simplified formulae of 0 3, the practical solution is hardly more difficult. In fact the 
first N of the PSE equations (18) are the same as the WFE equations, and the last one, 
(19), differs only in that W i  is replaced by GAN-,QL-,/GAN. For this reason, the 
PSE does not seem more difficult than any of the fully numerical methods. 

To prove the applicability of the PSE method to resonant states, we also show some 
results for the lowest 1=6 state of the I60+a system. In  this example there is one 
forbidden state. We have used the same potential as in the bound-state case. In figure 
1 ( b )  we plot the values \ E ,  - El as functions of N. It can be seen that the smoothing 
procedure is even more important here than for the bound state. The convergence is 
slower-but at least when the smoothing procedure is used it is satisfactory. Neverthe- 
less, for a very narrow resonance the imaginary part of the energy may be relatively 
inaccurate. The comparison of the resonant wavefunctions calculated with two different 
N (figure 2 ( b ) )  also shows the slower convergence: the agreement is worse than for 
the bound-state case. (The wavefunctions in figure 2 ( b )  correspond to that of in figure 
2 ( a )  in the number of the allowed states.) However, our examples show that with a 
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I l l  I 
0 2 4 6 8 10 

r i f m l  

Figure 2. Radial OCM functions rc$(r) for ( a )  the ground state and ( b )  the 6* state 
of I6O+a. The dependence of these functions on the size of the basis is shown. In ( a ) :  
-, PSE ( N = 3 3 ) ; .  . ', WFE ( N = 3 3 ) ;  - - - PSE ( N =  1 1 ) ;  -.-  WFE ( N =  11). In ( b ) :  
- , PSE ( N  = 30); - - - PSE ( N  = 8). The parameters are the same as in figure I .  The 
smoothing procedure is used with a = 6 for the PSE. 

large enough basis the PSE method provides a possibility for an easy calculation of 
the quasi-bound states of cluster nuclei?. 
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